Site icon The Indian Panorama

ISRO successfully carries out controlled re-entry experiment of aged satellite

The satellite has re-entered the Earth’s atmosphere and would have disintegrated over the Pacific Ocean. The Indian Space Research Organisation said it successfully carried out an “extremely challenging” controlled re-entry experiment of the decommissioned orbiting Megha-Tropiques-1 (MT-1) satellite.
“The satellite re-entered the Earth’s atmosphere and would have disintegrated over the Pacific Ocean,” the Bengaluru-headquartered national space agency said on Twitter.
The low Earth satellite was launched on October 12, 2011, as a joint satellite venture of ISRO and the French space agency, CNES for tropical weather and climate studies. An uninhabited area in the Pacific Ocean between 5°S to 14°S latitude and 119°W to 100°W longitude was identified as the targeted re-entry zone for MT1, weighing about 1000 kg, ISRO said earlier this week. About 125 kg on-board fuel remained unutilised at its end-of-mission that could pose risks for accidental break-up, an ISRO statement had noted.
This left-over fuel was estimated to be sufficient to achieve a fully controlled atmospheric re-entry to impact the uninhabited location in the Pacific Ocean, ISRO had said.
Controlled re-entries involve deorbiting to very low altitudes to ensure impact occurs within a targeted safe zone.
Usually, large satellites/rocket bodies, which are likely to survive aero-thermal fragmentation upon re-entry, are made to undergo controlled re-entry to limit ground casualty risk. However, all such satellites are specifically designed to undergo controlled re-entry at end-of-life (EOL).
“MT1 was not designed for EOL operations through controlled re-entry which made the entire exercise extremely challenging”, ISRO said.
Furthermore, the on-board constraints of the aged satellite, where several systems had lost redundancy and showed degraded performance, and maintaining subsystems under harsher environmental conditions at much lower than originally designed orbital altitude added to the operational complexities. Source: PTI

Exit mobile version